
RAN527 A 01RPM SEPARRTOR THEOREM AND ITS APPLICATION TO /GAIUSSIAN ELIMINATION TO. . (U) CARNEGIE-MELLON UNIVRD-ftPITTSDURG PA DEPT OF COMPUTER SCIENCE.. T J SHEFFLER
UNCL.SSIFIED DEC 6? CMU-CS-87-123 AFMdL-TR-8 -1159 F/O 26/3 NIL

Eu..'..Emon

hem r

11111 1.0 1 32

3.2

JQ2

11111 1111 1.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-196

3-A

4

".L-I.,,,. , ,, % t--- % %, ,, -"b =" ' " '.

PHOTOGRAPH THIS SHEET

IN_

10 U4 LEVEL INVENTORY

00

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRA&I

DTIC TAB

UNANNOUNCED

JUSTIFICATION ""- 0C-f E

____ 0
BY cb
DISTRIBUTION /
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL

DATE ACCESSIONED

DiSTRIBUTION STAMP

DATE RETURNED

68 2 05 108
DATE RECEIVED IN DTIC REGISTERED OR ('ERTIFIEI) NO.

PHOTOGRAPH THIS SHEET AND RE fURN TO DTIC-DDAC

DTIC FORM 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY 81 USE () UNT IL

DEC 83 STOCK IS EXHAUSTED.

AFWAL-TR-87-1159

A GRAPH SEPARATOR THEOREM AND ITS APPLICATION TO
GAUSSIAN ELIMINATION TO OPTIMIZE BOOLEAN EXPRESSIONS

n ,m FOR PARALLEL EVALUATION

4 Thomas J. Sheffler

Carnegie-Mellon University
S Computer Science Department

Pittsburgh, PA 15213-3890

S December 1987

Interim

Approved for Public Release; Distribution is Unlimited

AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

S.

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

e4__
CHAHIRA M. HOPPER RICHARD C. JONES.

Project Engineer Ch, Advanced Systems Research Gp

Information Processing Technology Br

FOR THE COMMANDER

EDWARD L. GLIATTI
Ch, Information Processing Technology Br
Systems Avionics Div

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFAL4AAT , Wright-Patterson AFB, OH 45433-6 4 to help us maintain
a current mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

$k.

%I

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. O70-0188

Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-CS-87-123 AFWAL-TR-87-1159

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carnegie-Mellon University (if applicable) Air Force Wright Aeronautical Laboratories
Iane eelo UniersAFWAL/AAAT-3

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS(City, State, and ZIP Code)

Computer Science Dept Wright-Patterson AFB OH 45433-6543
Pittsburgh PA 15213-3890

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-84-K-1520

9c. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

_61101E 4976 00 01
11 TITLE (Include Security Classification)

A Graph Separator Theorem and Its Application to Gaussian Elimination to Optimize
Boolean Expressions for Parallel Evaluation

12. PERSONAL AUTHOR(S)

Thomas J. Sheffler
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Interim FROM TO 1987 December 87
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

I f]
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

GCLussian elimination, which has been shown to be applicable to the solution of prob-

lems in many different domains, is the technique used by C 0 S M 0 S to symbolically

analyze digital MOS networks for their behavior in terms of Boolean expressions.

While pivot selection algorithms are known which minimize the total number of

operations required to solve a system, this report will focus on pivot selection algo-

rithms that result in expressions of small depth, from which fine-graincd parallelism

may be extracted.

A graph theoretic approach to Gaussian Clinination is adopted which allows

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
3UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22bTLEHQ (InWf Area Code) ?2VW fCSVjO
Chahira M. Hopper (513) JU-) A WAL/AAAI-

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

i Unclassified

- ' '%~.'-.W..%VV% .'i.:....

UNCLASSIFIED

Block 19 (Continued)

the structure of sparse systems to be clearly examined, and an elimination ordering

based on graph separators is shown to result in expressions of small depth. This

report proposes an algorithm related to Gaussian elimination which characterizes

graphs in terms of decomposition rules and shows that for graphs which may be

reduced by an elimination ordering that results in low total complexity, a reordered

elimination sequence may result in expressions of small depth.

. ii

1 1

Acknowledgements

My sincere appreciation goes to my friends and family who have been supportive of

me in these last months and have put up with my periods of irritability when things

were not going right. A special thanks is extended to D. Sleator whose assistance

with the proof of Chapter 5 was most appreciated, and to R. Heuler whose careful

editing was an enormous help. I am indebted to my advisor, R. Bryant, who

suggested this topic and guided me in my research. While being patient enough to

allow me to explore areas which would eventually lead nowhere, he was always there

to help me get back on track. I am grateful to him for his guidance and enthusiasm

throughout the course of this work.

Contents

I Introduction 1

1.1 CO SM O S 3

1.2 Gaussian Elimination 5

1.3 Expression Representation and Pivot Selection 6

1.4 Parallel Architectures / Simulation Engines 7

2 Gaussian Elimination 11

2.1 Introduction 11

2.2 A Graph Theoretic Approach 13

2.3 Path Problems on Graphs 15

2.4 Choosing an Elimination Ordering 18

3 Generalized Nested Dissection 22

3.1 Graph Separators 22

3.2 Elimination Ordering Algorithms 24

3.2.1 Nested Dissection 24

3.2.2 Automatic Nested Dissection 26

-g V

CONTENTS

3.2.3 Generalized Nested Dissection - I. 26

3.2.4 Generalized Nested Dissection - HI.. 28

3.3 Separator Trees 28

3.4 Complexity Versus Structure 30

4 Separators for Series-Parallel Graphs 34

4.1 Series-Parallel Reduction Rules 34

4.2 Separators of SP Graphs. 37

4.3 An Elimination Ordering for SP Graphs. 40

5 Separators for Arbitrary Graphs 46

5.1 Elimination Cliques. 46

5.2 Reduction Rules for Arbitrary Graphs. 49

5.3 A Separator Theorem for a Bipartite Tree 51

5.4 Using a Decomposition Tree to finid Separators 54

5.4.1 Bounding the Number of Children 56

5.5 A Nested Dissection Ordering Algorithm. 57

5.6 A Bound on Complexity. 60

5.7 A Bound on Depth. 60

5.8 SP and GSP Graphs Revisited. 63

5.9 Experimental Results 64

8 Discussion 68

6.1 Future Considerations. 69

A Graph Theoretical Definitions 70

B Various Channel Graphs 72

Bibliography 75

Vi

List of Figures

1 COSMOS Implementation............................. 3

2 A Simple Graph of Seven Vertices........................7

3 DAG Resulting from Left to Right Elimination Ordering..........8

4 DAG Resulting from Nested Dissection Ordering.............. 9

5 Solution of a System of Equations Under Two Permutations 12

6 The Fill-in Resulting From Two Different Elimination Orders 14

7 Solution of a Boolean System by Gaussian Elimination.......... 17

8 The General Series-Parallel Production Rules. 19

9 Examples of GSP Graphs 19

10 Non-GSP Graphs 20

11 A 1-Separator for a Tree. 23

12 A Grid Graph of Size n = k x k With Separator Set Indicated. 25

13 A Graph and Its Separator Tree........................ 29

14 A Graph Resembling a Binary Tree...................... 31

15 The Resulting DAG With an Ordering Due to the Minimum Degree

Algorithm....................................... 32

16 The Resulting DAG With an Ordering Due to Nested Dissection .. 33

17 Series and Parallel Reduction Rules 35

18 Construction of a Decomposition Tree for a SP graph. 36

19 Edge Labeling for the Reduction of SP Graphs............... 37

20 Labeling for Each Node in a Decomposition Tree............. 38

21 A Decomposition Tree After Labeling. 38

Vii

Elia -Atl-M

LIST OF FIGURES

22 Recursive Algorithm for Finding 2-Separator of a SP Graph 39

23 Nested Dissection Elimination Ordering Algorithm for SP Graphs . 42
24 A Sample Graph 43

25 The DAG Resulting from the Generalized Nested Dissection Algorithm 44

26 The DAG Resulting from the Minimum Degree Algorithm 45

27 A Single Reduction Rule for SP graphs 48

28 Reduction Rules for Arbitrary Graphs 49

29 A Decomposition Tree Fragment 49

30 Elimination of vj and the Resulting Decomposition Tree Fragments . 50

31 The Resulting Decomposition Tree 50

32 An Algorithm to Produce a Decomposition Tree for an Arbitrary

Graph 52

33 A Red-Black Tree 53
34 Algorithm to Find a Black Separator Node 55

35 A Reduction Rule of Order Two 56
36 Modified Algorithm to Produce Decomposition Tree for an Arbitrary

Graph 58
37 Elimination Ordering Algorithm for Generalized Decomposition Trees 59
38 The Depth of DAGs for a Clique 61

39 A Separation Set and Two External Vertices 62

40 A Linear Chain Graph of Ten Vertices 73

41 A Sixteen-Bit Shifter 73

42 A Sixteen-Bit Logical Shifter 73

43 Seradd.a 74

44 Seradd.b 74

45 Channel Graph for a Sixteen-Bit RAM Cell 74

viii

List of Tables

1 Comparison of Minimum Degree and Automatic Nested Dissection . 27

2 Results for Linear Chains of Varying Length 65
3 Results for 16-bit shifters;.. 65
4 Results for 16-bit logical shifters. 66

5 Results for RAIs of Varying Sizes. 66
6 Results for Parity Ladders of Varying Number of Vertices 67

7 A Few Random Networks 67

* ix

Chapter 1

Introduction

A recent development in the continuing search for faster methods of circuit simula-

tion has been the advent of special-purpose hardware dedicated to simulation. With

a large number of small elements working in parallel, increases in speed of two to

four orders of magnitude over general-purpose computers are not uncommon. While

this equipment is well-suited to simulation at the gate level, it has not been very

successful at simulating M O S networks due to the bidirectionality of M O S transis-

tors. A variety of special-purpose hardware elements have been designed to capture

this characteristic of M O S transistors with limited success. A more promising ap-

proach has been demonstrated by the CO SM OS (Compiled Simulator for MOS)

simulator, which symbolically analyzes the behavior of a MO S circuit and then

represents it in purely Boolean terms. The expressions generated by C O S M O S

can then be evaluated on hardware designed for gate-level simulation.

The Boolean expressions generated are multi-level with shared subexpressions.

While simplification techniques for less complex Boolean expressions exist, none

are applicable to expressions of this type. When mapping these expressions onto

special-purpose hardware, a new definition of simplicity must be made. Just as the

limiting factor for the performace of logic is its critical path, the limiting factor

for the performance of a M O S simulator using Boolean expressions on highly par-

allel hardware is the depth of the expressions. However, optimization of Boolean

expressions to minimize depth is an issue that has not been widely discussed.

1

CHAPTER 1. INTRODUCTION 2

Gaussian elimination is a technique that has continually proved to be useful for

problem solving in areas other than systems of linear equations. In the C 0 S M 0 S

software, Gaussian elimination is used in the analysis of subnetworks to generate

Boolean expressions. In this process, pivot selection is a crucial issue and many

methods have been proposed to minimize the total number of algebraic operations

performed. The order in which pivots are selected also affects the structure of

operations, an effect which has not been studied in depth.

Presented in this report is a pivot selection algorithm that guarantees that the

expressions generated by Gaussian elimination will exhibit balance and will there-

fore have small depth. The remainder of this chapter is dedicated to explaining

the motivation of this research in relation to the C O S MO0 S project. Chapter 2

discusses Gaussian elimination and introduces a graph theoretic view of the algo-

rithm. Pivot selection is shown to be important for keeping the total complexity of

the solution of a sparse system low.

Graph separator theorems and nested dissection pivot selection algorithms are

the subject of Chapter 3, where it is shown that an ordering based on nested dissec-

tion results in expressions of small depth. Chapter 4 analyzes series-parallel graphs

and presents decomposition trees, which are shown to be useful for finding sepa-

rators in such graphs. With these separators, it is easy to produce an elimination

ordering for a series-parallel graph that results in small depth.

In Chapter 5, an algorithm is described that allows the construction of decom-

position trees for arbitrary graphs. These trees are constructed through a procedure

very similar to Gaussian elimination. A heuristic strategy is used for this first pass,

but it is shown that an elimination ordering that results in low total complexity can

be used to find an elimination ordering that results in small depth of the expres-

sions generated. The method has applicability to any system solved by Gaussian

elimination but is especially suited to those systems that arise in the analysis of

MO0 S networks. Finally, Chapter 6 briefly discusses the outcome of this work and

suggests areas for future research. Also, Appendix A is provided to explain some

basic graph theoretical terms used in this report.

CHAPTER 1. INTRODUCTION 3

rSimulation User
IKernel Interface

Functional SML
Elements I

LGCCC Compiler - Executable
C CC Simulator

Network A OS Descriptions Code

Figure 1: COSMOS Implementation

1.1 COSMOS

C O S MO0 S consists of a set of programs configured as shown in Figure 1. The sym-

bolic analyzer A NAMOS accepts as input the switch-level representation of a MO0 S
circuit and partitions it into a set of channel-connected subnetworks. It then derives
a Boolean representation of the behavior of each subnetwork. A second program,

LGCC, translates this Boolean representation into a set of C language evaluation
procedures plus declarations of data structures describing the interconnections of
the networks. Finally, the code produced by LGCC, together with the simulation
kernel and user interface code, are compiled to generate the simulation program.
The resulting program appears to the user much like an ordinary simulator, ex-
cept that the network is already loaded at the start of execution. The simulator
implements a block-level, event-driven scheduler, in which blocks correspond to

subnetworks. Processing an event involves calling the appropriate procedure to
recompute the outputs of a block.

Unlike programs that operate directly on the transistor-level description during

simulation, CO0S MO0S preprocesses the transistor network to produce a Boo lean
description. This description, formulated by ANAMOS, captures all aspects of
switch-level networks, including bidirectional transistors, stored charge, different

signal strengths, and indeterminate (X) logic values.

CHAPTER I. IIJTROD UCTION 4

The most novel aspects of COSMOS are found in ANAMOS. The transistor

network is partitioned into channel-connected subnetworks and the steady-state re-

sponse of each subnetwork is derived separately. Each subnetwork corresponds to

a component of the undirected graph having as vertices the storage nodes and as

edges the pairs of nodes connected by transistor sources and drains. This parti-

tioning describes the static connections in the network; i.e. those independent of

transistor state.

Typical MO0 S circuits partition into many small subnetworks, although some

subnetworks can be quite large. Within a subnetwork, the behavior can be complex

and difficult to analyze due to the bidirectionality of transistors and the variety of

ways in which state is formed in a MO0 S circuit. The interactions between subnet-

works, however, are more straightforward. Each subnetwork acts as a sequential

logic element having as input the input nodes connected to transistor sources and

drains, plus the gate nodes of the transistors. The subnetwork state is stored as

charge on the storage nodes. Its outputs are those nodes that are gate nodes of

transistors in other subnetworks.

To cast the switch-level model in terms of Boolean operations, a logic value

y E (0, 1, X) is represented by a "dual rail" Boolean encoding, y.1, .0 E {0, 1}, as

shown below:

I1 0

0 0 1

With a Boolean encoding of the state values, the problem of symbolic analysis can

be defined as follows. For each node n, introduce Boolean variables n.1 and n.0 to

represent the possible encoded values of the node state. For each node n, ANAMOS

derives Boolean formulas N.1 and N.0 in terms of the set of node state variables.

These formulas represent the encoded value of the steady-state response at each

node as a function of the initial node states.

r;3.IW-WV 17M IrFMV9 NMWV'1-" -UN 5- , w v~~

CHAPTER 1. INTRODUCTION 5

Switch-level networks resemble classical contact networks in that both are com-

posed of bidirectional switching elements. Shannon [281 first developed techniques

for analyzing a contact network symbolically. In his method, each contact is labeled

with a Boolean literal and the conditions under which a path may form between

designated pairs of terminals are formulated as a Boolean expression. This idea

serves as the conceptual basis of ANAMOS, although MO S circuits require a more

complex method of analysis. Furthermore, most of the methods presented in the

contact network literature are not particularly well suited to computerized applica-

tions for large circuits.

1.2 Gaussian Elimination

The contact network analysis problem can be formulated as the solution of a system

of Boolean equations [71. Solution of this system relates closely to the problem of

finding expressions that describe all paths between vertices in a directed graph.

Tarjan [291 has shown that a generalized form of Gaussian elimination can solve a

large class of path problems, including contact network analysis. When solving a

system of Boolean equations by Gaussian elimination, Boolean operations A and V

replace the conventional arithmetic operations.
Gaussian elimination proceeds in two parts: forward elimination and backsolv-

ing. Forward elimination propagates information about paths forward to a single

vertex. Backsolving distributes information to the vertices previously eliminated.

Forward elimination consists of repeatedly selecting a vertex v (the *pivot") for re-

moval from the graph. The elimination of vertex v involves propagating its label to

each neighbor u through their shared edge. Furthermore, the label of an edge span-

ning each pair of neighbors u and i may be updated as well. Backsolving proceeds

by adding vertices back to the graph in the reverse order of their elimination. The

value on each vertex is computed by summing the effects of all neighbors eliminated

after v.

V ~' ~%

- air =1o' pvn Vq-r ,i-uw~~ VWVrW. W- ' J vss-. .- V~~d

CHAPTER 1. INTRODUCTION 6

Gaussian elimination has a distinct advantage over iterative methods for sym-

bolic analysis. Being a direct method, it requires no testing for convergence. Sym-

bolic analysis can proceed by simply constructing Boolean formulas in terms of

operations A and V in accordance with the elimination steps. A direct method

avoid~s the need to test formulas for equivalence, an NP-hard problem.

1.3 Expression Representation and Pivot Selec-

tion

ANAMOS represents a Boolean formula as a directed acyclic graph (DAG). A DAG

resembles a parse tree whose leaves represent variables or constants and whose

internal nodes represent binary Boolean operations. In a DAG, however, a given

subgraph may be shared by several branches, yielding a more compact representa-

tion 141. During the analysis of a subnetwork, A NAMOS constructs a single DAG with

multiple roots, one root for each vertex and edge in the channel graph representing

the subnetwork.

Upon completion of the execution of the Gaussian elimination algorithm, the

steady-state response of the subnetwork has been computed. The DAG contains one
root for each vertex of the channel graph, and the expression indicated by that root

gives the steady state response at that vertex in the graph.

The total number of nodes in the DAG, an well an its structure, is determined by

the order of operation on vertices in the Gaussian elimination procedure. Figure 2

shows a simple graph that could represent a pass transistor network of six tran-

sistors, or a network consisting of six switches. The vertices and edges are labeled

with symbolic values. In the Gaussian elimination procedure, the vertices in the

graph could be operated on in a number of different orders.

If the vertices are eliminated from left to right, then the DAG of Figure 3, with

depth of 24, results. Alternatively, if the vertices are eliminated in an order that

resembles that of a nested dissection algorithm, the DAG of Figure 4 results. This

DAG has a depth of only 11 operations, less than half of the other one. Each

pw %W-wff r VWa1W W

CHAP TER 1. INTRODUCTION 7

a r~ ef e*

1 2 3 4 5 6 7

Figure 2: A Simple Graph of Seven Vertices

DAG indicates the same total number of operations, but their structure is different.

The DAG of Figure 3 represents the solution of a system in which the operators

must be applied to values sequentially, whereas the DAG of Figure 4 indicates a

situation in which some parallelism could be exploited, given a machine capable

of such an evaluation strategy. For longer chains of vertices, the results are more

dramatic. The left-to-right elimination ordering will give expressions whose depth

grows as 0(n), while a nested dissection algorithm will give expressions that grow

as 0(lg n).

1.4 Parallel Architectures / Simulation Engines

The C O S MO0 S simulator as designed runs on a general-purpose computer. Dur-

ing simulation, the DAGs representing a subnetwork are evaluated for new values

at each simulation clock cycle. An event-driven scheduling algorithm is used to

determine those subnetworks that need to be evaluated, since some subnetworks

will not require evaluation on every clock cycle. The total amount of time required

to simulate a single clock cycle is a function of the total number of operations in

each of the DAGs, and the number of subnetworks needing to be evaluated.

Special-purpose processors have been developed to accelerate tasks of logic gate

simulation [9,1,61. Although special-purpose processors for switch-level simulation

have been designed and constructed [8,12], they require a substantial amount of spe-

cialized hardware. It is unlikely that they will ever achieve the cost/performance

levels of processors that support only gate-level evaluation. These gate-level sim-

ulation processors use many simple function evaluators in parallel to achieve their

speed.

CHAPTER 1. INTRODUCTION

x(1)

v
x (2)

x(3)

b(V

X(4)

c

x (5)

a ~ x(6)

x(7)

A b(7)

A

A b(3)

A b42)

bi') a ~)

Figure 3: DAG Resulting from Left to Right Elimination Ordering

I

S

CHAPTER 1. INTRODUCTION

x(3) x(5)

X(1) x(7)

x (2) V A A V x(6) v

X(4 S)d I(S) A A b(?)

/

A b(4a b $1 d

e4;t)~ ~ (3 cP l $ e

bfz) b b(3 b((W)

Figure 4: DAG Resulting from Nested Dissection Ordering

" " ,t*, "% " ,"**."..;.. '" ",./* "-".. ' ".. " .' .. ' " . . .- . -". J. - .. - ". -- ". """""'""-

CHAPTER 1. INTRODUCTION 10

The DAGU produced by ANAMOS resemble simple logic networks with AND and

OR operations. These expressions can be evaluated on hardware designed for gate-

level simulation. If enough processors are used, the DAGS for all subnetworks can
be evaluated in parallel and an event-driven scheduler would not be needed. In this

scenario, the limiting factor on the amount of time it takes to simulate a clock cycle

is the depth of the deepest DAG for all of the subnetworks.

It has already been shown that the structure of DAGs is influenced by the elim-

ination ordering used during Gaussian elimination. The rest of this report is con-

cerned with finding elimination orderings guaranteed to lead to DAGs with small

depth. While the discussion is presented largely in terms of Boolean expressions,

the results are applicable to other systems solvable by Gaussian elimination.

'doe, 'o "-

Chapter 2

Gaussian Elimination

2.1 Introduction
.d.

Although Gaussian elimination was originally devised as a technique for solving

systems of linear equations, its use has continually been shown to be applicable

to problem solving in other areas. Examples are in the solution of path problems,

the conversion of finite automata to regular expressions, and the analysis of global

flow problems [29,2]. This chapter will discuss the importance of pivot selection in

Gaussian elimination and will introduce a graph theoretic approach to the problem.

Systems of equations are represented by the equation

Mz = b,

where M is an n x n matrix, z is an n x 1 vector of unknowns, and b is an n x 1

vector of constants. If M is a symmetric positive definite matrix, then it may be

factored into the form M - LDLT where L is a lower triangular matrix and D is .

a diagonal matrix. Gaussian elimination may be used to find L directly and the

equations Ly = b, DLTz = y may be solved by backsubstitution to find a solution

to the system. The total time required to perform the process is 0(n ') in general.

However, if M is sparse' special provisions may be made to perform elimination

'Sparsity will not be formally defined here. It will be considered to mean a matrix, many of A.

whose entries are bero.

11

., -, .• ., ,. , ,, , .- , .. .-.- ..,-... .-.'.. -. .- '.."-... ." -,, .. .-I

CHAPTER 2. GAUSSIAN ELIMINATION 12

(12317 (1 2 3

3 1 2 2 5 7

M = 1 5 2 (pMpT) 1 2
7 2 5 2 5 1

2 1 37 1 12

[12 3 1 7) 12 3

.25 -. 25 .25 1 1
4.7 -. 33 2 1 2

.64 .14 1 1
.11 1

Figure 5: Solution of a System of Equations Under Two Permutations

more efficiently.

The limiting factor in the efficiency of sparse Gaussian elimination is the amount

of fill-in that occurs during the elimination process. Fill-in is defined as the number

of zero entries in the matrix that become nonzero as elimination proceeds. The total

amount of fill-in that arises from the solution of a sparse system of equations may
be limited to some extent by selecting a proper elimination ordering.

A permutation of the rows and columns of M results in a new matrix that

represents the same system of equations as M. In matrix notation, a permutation

of the system is defined by

(pMpT)(Pz) = Pb.

where P is an n x n permutation matrix. The new coefficient matrix PMPT will in

general have a different fill-in structure than M. Thus, a matrix may be permuted

before Gaussian elimination is performed in order to achieve greater efficiency. An

example of a system of linear equations is shown in Figure 5.

Both matrices in the figure represent the same system of equations under dif-

ferent permutations. The upper triangular form DLT results after the final step

of the forward elimination phase of Gaussian elimination. Notice that the solution

of the equations defined by M has fill-in terms while the solution of PMPT does

CHAPTER 2. GAUSSIAN ELIMINATION 13

not. This figure clearly indicates that savings in computation time may be made

by reordering the rows and columns of a matrix.

The permutation of rows and columns need not be explicit; it may be made

during the elimination step. An interchange of rows and columns is equivalent to

the selection of some arbitrary nonzero diagonal element of M as the pivot. Various

methods of pivot selection based on a matrix representation have been presented

122]. These will not be discussed in this report. Instead, their graph theoretic

counterparts will be introduced in Section 2.2.

2.2 A Graph Theoretic Approach

Define G(M) to be the graph G = (V, E) associated with M, such that each variable

in the system of equations is associated with a vertex vi, i = 1... n, and that for

each nonzero entry Mj there is an edge (vi, v,) with head v, and tail vi. Such a

graph represents the nonzero structure of the matrix M [25]. If M is symmetric, G

may be an undirected graph. However, if M is not symmetric, (i.e., Mi.j # Mn,),

G will have directed edges.

An elimination ordering is a bijection a : {1, 2,.-., n} " V and G. = (V, E, a)

is an ordered graph. This graph may be used as an aid in selecting an elimination

ordering that produces the minimal total fill-in.

Fill-in manifests itself on the graph G as additional edges during the elimination

process. Pivoting along a diagonal element in M is equivalent to the removal of a

vertex, v, from the graph. The deficiency of v, D(v), is the set of edges defined by

D(v) = {(u, w)I(u, v) E E,(v,w) E E,(u,w) 1 E}

and represents the set of fill-in edges due to the elimination of vertex v. The graph

G. = (V - {v),E(V - {v}) U D(v))

is called the u-elimination graph of G. For an ordered graph, G., the elimination

process

P(G.) =[= GoG 1, G29, G-1. 1

N~ I

N PJ.& AP A-

CHAPTER 2. GAUSSIAN ELIMINATION 14

, S a={3,6,7,5,4,2,1 }

5 5s 5 IF()I =6
7 7 7 .

2 2 2 2 2

P=(1,4,6,7,5,3.2}

77 IF(C)I = 1

Figure 6: The Fill-in Resulting From Two Different Elimination Orders

is the sequence of graphs that result from the elimination of the vertices in the order

specified by a. The total fill-in, F(G,) is given by

ftl

F(G=) = U D(v,).
t==1

Fill-in that occurs with the elimination of a vertex is a function of the elimination

ordering a. An example is shown in Figure 6 which depicts a graph with two

elimination orderings, a and 6. The elimination steps and the fill-in edges that

occur are shown. The total amount of fill-in lF(G) I is labeled for the two elimination

orderings. This example illustrates the effect of elimination ordering on the total

complexity of the solution of a system by Gaussian elimination. However, finding

an elimination ordering that produces the minimum fill-in for a given graph is a

problem that has been demonstrated to be NP-complete 113,321.

A system that may be solved with no fill-in, (i.e., F(G.) = 0), is called a

monotone transitive graph or a perfect elimination graph. It can be observed that

the edges added during Gaussian elimination result in a perfect elimination graph,

G= (V, (Eu F(G.))).

% %.

',.

CHAPTER 2. GAUSSIAN ELIMNATION 15

Rose termed this the monotone transitive extension of a graph and also characterized

these graphs as triangulated graphs [26]. A triangulated graph is one in which every

cycle of length n > 4 contains a chord. Finding the minimum set of additional

edges that results in a triangulated graph has been shown to be equivalent to the
problem of finding the best elimination ordering. Even though this observation

provides insight into the problem, it leads to no good algorithms for the selection

of an elimination ordering [19].

2.3 Path Problems on Graphs

The graph representation of a system of equations is more than merely a tool for

miiiing fill-in. The single-source path problem is to find, for all vertices v, an

expression P (a, v) that describes all paths from the source a to v. Path expressions

are built from the operators U (union),.- (concatenation), and * (reflexive transitive
closure). It has been shown that the solution of this path problem on graphs also

serves as a solution to a variety of problems when the path operators are mapped

into other domains. These include the solution of systems of linear equations, data

flow problems, and shortest path problems [29]. In this paper only those path

problems where the desired expressions simply give the conditions under which a

path from a to v exists are considered.

In the Boolean algebra of this analysis (B, V, A, 0, 1), the operations V and
A denote Boolean "and" and "or," respectively, applied to functions, while the

distinguished elements 0 and 1 denote the constant functions that yield 0 and 1,
respectively, for all argument values. This algebra is sufficient to express path

expressions for a simple path analysis. For this application the operators described

by Tarjan are mapped as follows: U --. V and - --+ A. The operator * evaluates to

1 for all Boolean values and will not enter into the discussion herein.

A vertex labeling of graph G = (V, E) is an assignment xz(v) E B to each vertex

v E V. An edge labeling is an assignment A(u,v) E B to each edge (u,v) E E.-
Gaussian elimination may be performed directly on the graph G to solve the linear

CHAPTER 2. GA USSIAN ELIMINATION 16

system Ax = b when this system is recast as

A'z+b = x

where A' = I - A. The the solution to this system is the same as that for its other

form, but the reformulation allows the solution of systems of equations in algebras

that do not have an inverse under the concatenation operation (-). In particular,

systems of Boolean equations do not have an inverse under A.

The Gaussian elimination algorithm described in Figure 7 solves the single-

source path problem under Boolean algebra. It begins by placing an initial label

b(v,) representing a Boolean function on each vertex. Each edge (vi, vj) is initially

labeled with Aj. Graph structure is modified as described earlier, but labels are

modified as well. At each step, before a vertex is eliminated, its label is propagated

to each of its neighbors. Likewise, the labels of fill-in edges are modified. Backsolv-

ing consists of a similar sequence of operations: propagating labels back to vertices

that are successively added to the graph. At the termination of the algorithm,

each vertex is labeled with an expression z(vi) that satisfies the single-source path

problem as stated above.

The complexity of this algorithm can be analyzed in terms of and-or operations.

Define one operation to be of the form (a V (b A c)). During forward elimination I
two sequences of operations are performed for each vertex: propagation of values
to neighbors and calculation of labels of fill-in edges. If the graph is directed, the

total number of operations performed due to forward elimination is

d(,,,) + 2 .

Backsubstitution results in the propagation of labels back to vertex vi from each of

its d(vi) neighbors. Thus, backsubstitution contributes
n

Zd(v1)

operations. The total complexity for performing Gaussian elimination on a graph

is given by

d(vj) + 2 + d(vj)
• 3=.

CHAPTER 2. GAUSSIAN ELIMINATION 17

{ Initial Labelling }
for i = 1 to n do

z(v,) .- b(v,)
od

(Forward Elimination }
Vo -V
Eoa E

fori- 1Ito (n-1) do
V +- v-I - {v.,J
E, +- E,_ n [Vi x V]
for each u E Vi such that (ve,,u) E Ei-t do

z(u) 4-- z(v.,) V [x(ta) A A(v 0 .,u)]
for each w E V such that (u, vo.) E E_. and # v., do

if (u,w) E E, then A(u, w) +- A(u, w) V tA(u, v.,) A A(v.,,w)]
else E, +- E, U {(u,w)}; A(uw) 4- A(u, v A,) A A(v,,w)
fi

od
od

od

{ Backsubstitution }
for i +- (n - 1) to 1 do

for each u E Vi such that (u, v,) E Ei- , do
z(v ,) 4- x(v,,) V Iz(u) A A(u,v,)I

od
od

Figure 7: Solution of a Boolean System by Gaussian Elimination

~ * ~ _.

CHAPTER 2. GAUSSIAN ELIMINATION 18

which is more simply expressed as

_[d,,)' + ti)] (i)

This formula reveals that the total complexity is extremely sensitive to values
of d(v,). If the graph can be operated on in such a manner that d(vi) is bounded by
a constant for all i, then the complexity will be 0(n). However, in the worst case,
when G is the complete graph of n vertices, Kn, complexity will be 0(n 3).

2.4 Choosing an Elimination Ordering

While finding an elimination ordering that results in the minimum total operation
count is an NP-complete problem, heuristics that often result in good orderings are
available [261. One heuristic based on the results of Equation 1 relates the total
complexity of performing Gaussian elimination to the elimination degrees of the
vertices. A method called the minimum degree algorithm produces an elimination

ordering by selecting the vertex with the minimum degree each time the main loop

of the elimination process is executed.

This method is computationally efficient and will often find good elimination
orderings. For some classes of graphs the minimum degree algorithm results in the
elimination ordering that gives the least number of total operations. One example
is the class of graph termed General Series Parallel (GSP). This class of graph
expands on the conventional definition of series-parallel graphs to include graphs
containing acyclic branches. Graphs of this class may be constructed inductively by

starting with a single vertex and applying the production rules given in Figure 8.
Each rule adds a vertex to the graph, as well as one or two edges. Examples of GSP
graphs for a complex gate that might arise in an nMOS circuit and a shift network
are provided in Figure 9. The shift network channel graph is shown redrawn, to
better exhibit its GSP structure.

The importance of GSP graphs is that they arise often in the analysis of MOS
networks 17]. Graphs of this type may be eliminated efficiently by finding the reverse
of the sequence of production rules that constructed them. It is clear that since each

CHAPTER 2. GAUSSIAN ELIMINATION 19

Acyclic Series Parallel

Figure 8: The General Series-Parallel Production Rules

Complex Gate Shift Network Shift Network (Redrawn)

b6 bS

a3 b4 &3 4 b4

b3 b3 a2

al b2 41 b2

01 bi

Figure 9: Examples of GSP Graphs

CHAPTER 2. GAUSSIAN ELIMINATION 20

4<

Carry Chain with Bypass

Parity Ladder

Figure 10: Non-GSP Graphs

production rule adds one vertex adjacent to at most two others, the minimum degree

algorithm will effectively find the reverse sequence of production rules applied. The

algorithm also results in a low total complexity since at each step an eliminated

vertex will have (at most) elimination degree d(vi) = 2. Thus, by Equation 1 the

total complexity of solving a system described by a GSP graph will be:

[d(v,)2 + d(vd] = 6n (2)

Other graphs that arise in the analysis of MOS networks have low elimination
degrees even though they may not be GSP. Two examples are shown in Figure 10.

These graphs may beeliminated effectively by the minimum degree algorithm with

no vertex having d(v) > 3. Thus, the minimum degree algorithm leads to low total

complexity for these graphs as well.

The minimum degree algorithm is an example of a greedy algorithm in that it
chooses vertices without regard to future eliminations of vertices. Another greedy

algorithm is the minimum deficiency algorithm. At each step, a vertex is chosen

such that D(v) is minimized. For GSP graphs, the minimum deficiency algorithm
will find a reverse sequence of production rules in a manner similar to the minimum

*~~~e %~.- . r

ISW EW~l.S ',U -W- ..FI l w 1FlY- ' .-00 1V

CHAPTER 2. GAUSSIAN ELIMINATION 21

degree algorithm. Each Acyclic and Parallel production rule leads to a vertex with

D(v) = 0, and each Series rule introduces a vertex with D(v) = 1. Thus, at each

elimination step, a vertex with D(v) = 1 or 0 may be found. In practice, this

algorithm often produces an ordering equivalent to the minimum degree algorithm

for GSP graphs and has the same bound on elimination complexity.

A drawback of the minimum deficiency algorithm is that it is more computa-

tionally intensive than the minimum degree algorithm. Calculating the deficiency

of a vertex involves examining all of its pairs of neighbors. Furthermore, if the

implementation is not clever, this calculation will be performed for all uneliminated

vertices at each step in the elimination process. An advantage of this algorithm

over the minimum degree algorithm, however, is that for arbitrary graphs that are

triangulated, a perfect elimination ordering will be found [26]. The minimum degree

algorithm is not guaranteed to find such an ordering.

This chapter introduced Gaussian elimination and the importance of finding a

good elimination ordering. The ordering algorithms examined were greedy in nature

and were performed during the elimination process. In Chapter 3, algorithms which

produce an ordering before elimination begins and which guarantee good asymptotic

complexity for certain classes of graphs will be examined.

Chapter 3

Generalized Nested Dissection

This chapter will discuss a more complicated method of finding an elimination

ordering called nested dissection which was first proposed for grid graphs that arise

in finite element analysis [14]. The algorithm's basic idea is to use a "divide and
conquer" strategy on the graph. Removal of a set of vertices results in two new
graphs on which Gaussian elimination may be performed separately. The results

for the two parts may then be combined to find the solution for the entire graph.

This method has been shown to result in good elimination orderings for certain

classes of graphs.

An observation about the results produced by nested dissection algorithms is

that the path expressions generated in Gaussian elimination tend to exhibit a bal-
d anced structure in which a parallel evaluation strategy may be used [23,24]. The

10 importance of balanced expressions was discussed briefly in Chapter 1. Later in

this chapter, the structure of expressions will be analyzed in more detail.

N

10% 3.1 Graph Separators

A separator of a graph is a relatively small set of vertices whose removal causes the

*graph to fall apart into a number of smaller pieces. If S is a class of graph, n is

the number of vertices in a graph, and p(n) is some function of n, then S satisfies a
p(n)-separator theorem if there are constants a < 1 and 6 > 0 such that a separator

I.. 22

- r r Lr - - - -- - - -- - ,

CHAPTER 3. GENERALIZED NESTED DISSECTION 23

Figure 11: A 1-Separator for a Tree

set with at most 8p(n) vertices separates the graph into components with at most

an vertices each.

Most algorithms based on separators are recursive, first finding a separator for

the whole graph and then finding separators for the components. For these algo-

rithms to work on a graph of class S, all subgraphs of this graph must also be

of class S. When a class satisfies this requirement we say that S i closed under

subgraph.

Binary trees are a class of graph that is closed under subgraph; separation at

any vertex separates the graph into two smaller binary trees. Figure 11 shows a

binary tree and its decomposition into two smaller trees at a single vertex separator.

This theorem is stated for binary trees [16]:

Theorem I The class of binary trees satiafies a 1-aeparator theorem for a - 2 and
/3=13

A planar graph is one which can be drawn on a plane so that the edges of the

graph only intersect at their endpoints[5]. For planar graphs, the following theorem

is taken from Lipton and Tarjan [21).

Theorem 2 The class of planar graph. eatisfica a V./n-separator theorem for a =

and or 2V2v

* In more recent work, Djidjev proved that the theorem also holds for /3 = V6 [10].

CHAPTER 3. GENERALIZED NESTED DISSECTION 24

Series-parallel graphs have long been used to represent simple electric net-

works [111]. Such graphs may be constructed by the application of series and parallel

production rules. These graphs obey the following theorem.

Theorem 3 The class. of series-parallel graphs satisfies a f-ac parator theorem77 for

This is accepted as a folk theorem. We will defer its proof until the next chapter,

which is devoted to series-parallel graphs.

These theorems are presented to provide examples of the types of separators

that have been shown to exist, and lead to algorithms for finding separators for

* limited classes of graphs (i.e., binary trees, planar graphs). Except for the simplest

cases, finding separators is a non-trivial problem and no good algorithms exist for

finding separators greater than two in size for arbitrary graphs.

3.2 Elimination Ordering Algorithms

Many variations of elimination ordering algorithms are based on nested dissection.

These algorithms have the following basis as a common starting point. The main

differences involve the separators found for different classes of graphs and the re-

sulting complexity bounds.

Given a graph G with n vertices, partition the graph into parts C, A,, A2, etc.,

* such that C is a separator of the graph. Number the vertices in C from n down to

(n - ICj + 1) so that they are eliminated last from the graph. Recursively number

the elements of each of the remaining parts of G, (A,, A2, - -) from 1 to (n - JCl).

The procedure continues until all vertices are numbered. Typically, the recursion
will cease when the size of a set reaches some small threshold value, no, in which

case the vertices of the set are arbitrarily assigned numbers in the given range.

3.2.1 Nested Dissection

Alan George proposed the first nested dissection algorithm [14). It was defined only
* for grid graphs for which there are simple separators. Figure 12 shows a grid graph

CHAPTER 3. GENERALIZED NESTED DISSECTION 25

-- I t -

Figure 12: A Grid Graph of Size n = k x k With Separator Set Indicated

with n = k x k. Removal of the middle column and middle row separates the graph

into four subgraphs. The algorithm is as follows. Assume that k is one less than a

power of two.

" Remove row (k + 1)/2 and column (k + 1)/2. Give the highest numbers to

these 2k - 1 vertices.

" There are now four components of the original graph. If their sizes are greater
than one, recursively number the components. Otherwise, number the four
vertices in the range specified.

Graphs where k is not one less than a power of two may be handled by adding
some number of "dummny" vertices. This algorithm is well suited for finite element
mesh analysis and results in O(nlgn) fill-in and 0(n'2) total operation count.

'I

CHAPTER 3. GENERALIZED NESTED DISSECTION 26

3.2.2 Automatic Nested Dissection

This algorithm is defined for any arbitrarily connected graph [15]. A graph may

be partitioned into levels by performing a breadth-first search beginning at some I
starting vertex v. Each level, L0 ,.. .L, is a partition of the graph. L0 contains
vertex v, L, contains those vertices adjacent to v, L 2 contains those vertices two

edges away from v, etc. Each level is, to some extent, a separator of the graph. The

algorithm is as follows:

" Partition the graph into levels Lo,..., L, by performing a breadth-first search

on the graph.

* The vertices of level s = L(r + 1)/2J separate the graph. Choose a minimal

subset of L. that is still a separator and assign the highest numbers to these

vertices.

" Recursively number each component (there may be more than two) whose

size is greater than no.

It has been suggested that this algorithm results in O(n lg n) fill-in for a number

of finite element meshes. While it may have asymptotic complexity approaching this

limit, we have observed better performance from the minimum degree algorithm

described in Section 2.4. Table 1 shows the results we have obtained for a variety

of square grid graphs of size V/n x V/n.

3.2.3 Generalized Nested Dissection - I

This algorithm was derived by Lipton, Rose and Tarjan [201. Given a graph G of

class S that obeys an f(n)-separator theorem with constants a and (, partition the

graph into three parts A, B, and C, such that C is a separator of the graph with

no more than Pf1(n) vertices.

* If there are no more than no = (A) 2 vertices, number them arbitrarily in

the range specified.

CHAPTER 3. GENERALIZED NESTED DISSECTION 27

Grid Minimum Degree Automatic Nested
Size Algorithm Dissection

(n) fill-in complexity fill-in complexity
16 18 172 22 200
25 37 350 46 420
36 71 678 100 1032
49 122 1228 165 1824
64 178 1840 240 2822
81 280 3198 321 4010
100 376 4442 454 5996
121 487 6078 612 8556
144 649 8662 819 12086

Table 1: Comparison of Minimum Degree and Automatic Nested Dissection

" Find sets A, B, and C that satisfy the V/-n-separator theorem where C is the

separator set.

" Assign the vertices of" C the highest numbers.

" Delete all edges whose endpoints are both in C. Apply the algorithm recur-

sively to the subgraph induced by B U C and also to the subgraph induced by

AuC.

The vertices of C are included in the recursive call; therefore some method of

recording which vertices have already been numbered is required. This algorithm

was analyzed in particular detail for classes of graph that follow a N/i-separator

theorem. From a result of Lipton and Tarjan we know that planar graphs satisfy

a /' i-separator theorem [21]. The ordering produced by this algorithm will result

in O(nlgn) fill-in and O(ni) total operation count for planar graphs, although

the coefficients of the actual fill-in and operation counts are very large. However,

the authors believe that their worst-case bounds are very pessimistic and that the

algorithm would be useful for very large graphs. Applications of such a theorem

include finite element meshes (which are planar embeddings of a planar graph) and

GSP graphs, which also belong to the class of planar graphs.

CHAPTER 3. GENERALIZED NESTED DISSECTION 28

3.2.4 Generalized Nested Dissection - II

A variation to the generalized nested dissection algorithm of the preceding section
has been proposed for separators that divide the graph into more than two pieces,
A and B [161. This algorithm assumes that the separator C splits the graph into
pieces A,, A2 , - - , A,. A separate recursive call is made for each part, A,., 1 < i < r.

" If there are no more than no vertices, then simply number the vertices arbi-

trarily in the range given.

" Find a separator with k < #/i vertices that divides the graph into pieces
A,, A2 , . -, A?, where I A,I < an. Number the vertices of C arbitrarily from

(n-IJCI+1) ton.

" Call the algorithm recursively r times for each component A& 1 < i < r to
number the remaining vertices in the range between 1 and n - JCJ

This algorithm differs from the previous one in that it does not include the
vertices of C in the recursive call. Also, by recursing on more than two subgraphs
at each level it does not, in general, result in the same bounds for fill-in and total
operation count. However, for planar graphs, the same bounds are met. For other
classes of graph with N/i-separator theorems it may even perform better [16]. For
the rest of this report, the term "generalized nested dissection" will be considered

to refer to this variation.

3.3 Separator Trees

The recursion of the algorithms described above suggests a natural decomposition of
graphs in terms of their separators. At the highest level is a separator that dividesI
the graph into components. These components themselves La~ve separators, and so
on. At the lowest level are components that may be divided no further, possibly
containing only a single vertex. This decomposition may be described in terms of
a structure called a separator tree.

0I

r W .W
A!~

CHAPTER 3. GENERALIZED NESTED DISSECTION 29

"10

Figure 13: A Graph and Its Separator Tree

A separator tree for a graph is shown in Figure 13. Such trees graphically show

how separators arise from a graph; they also reveal where fill-in may occur. The

following theorem is from [27].

Theorem 4 Let G = (V, E, a) be an ordered graph. Then (v, w) is an edge of Go.

if and only if there exists a path it = [ii V 2,, Vk+1 = W] in G. such that

a (vi)< min(o 1 (v),ct-1 (v)) for 2 < i < k.

This theorem states that an edge (v, w) fills in if and only if there is a path from v

to w containing only vertices eliminated before either v or w.

Theorem 4 may be used to calculate bounds on fill-in due to a nested dissection

algorithm. Consider a node of the separator tree C, and its subtrees A,, A 2 ,... , A,,.

Since there are no paths between A, and A, initially (for any two subtrees where
i 54 j), and the elements of C are given higher elimination numbers than those in

A, and A-, there may not be a fill-in edge between any member of A, and A,. Thus,
the separator tree shows that the only possible fill-in that may occur is along the

edges of the tree, or between the vertices of an individual node of the tree. This

fact may be used to calculate bounds on the total amount of fill-in using a nested

dissection ordering algorithm for some classes of graph.

V .%. " . " ' - ... , %. ,, .-I-'- ' - -. . - .
- r , . , , - ,, , '," - " ?.. '. . ' \ ' , , ,' , -%.. % %.**** * *-.o

CHAPTER 3. GENERALIZED NESTED DISSECTION 30

3.4 Complexity Versus Structure

Nested dissection algorithms are based on a divide- and-conquer strategy that suc-

cessively splits the graph into smaller subproblems to be solved independently. In-

formation about the smaller problems is then combined to find the solution of the

whole. The discussion on separator trees showed how this technique could lead to

bounds on the amount of fill-in that occurs and also bounds on total complexity.

The divide-and-conquer approach also leads to path expressions that exhibit

balance. Gaussian elimination can be viewed as the propagation of information

through a graph. Path expressions are built by propagating information about

the graph to one point and then propagating the information back to all points.

The structure of the expressions generated depends on how the information flows

through the graph, which is determined by the elimination ordering.

In Chapter 1, a simple graph as shown in Figure 2 was eliminated with two

different orderings of vertices. Elimination of vertices from left to right resulted

in the DAG of Figure 3, while a different elimination ordering resulted in a more

balanced DAG, that of Figure 4. The elimination ordering of the second can be seen

to be one that would be produced by a generalized nested dissection algorithm,

eliminating the middle vertex (a separator) last.

A graph resembling a binary tree is shown in Figure 14. The minimum degree

algorithm could result in a number of different elimination orderings, one of them

as shown in Figure 15. The resulting DlAG is shown as well. Once again, this DAG is

not balanced, but is "long and skinny." A generalized nested dissection algorithm

would guarantee elimination of the vertices in an order similar to that depicted in

Figure 16. The resulting DAG for this ordering is shown as well. It is obvious that

this DAG is more balanced, just as the DAG of Figure 4. We can say that this DAG

is "short and fat."

In many situations, these path expressions of the DAG are calculated symbolically

(as shown) and used repeatedly to solve problems that involve different labelings

of graphs with the same structure. k long, skinny expression tree means that all

operations must be performed sequentially, whereas a more balanced tree shows aI

:1

CHAPTER 3. GENERALIZED NESTED DISSECTION 31

2 C d 3

4 5 6 7

Figure 14: A Graph Resembling a Binary Tree

level of independence among the operations. An appropriate architecture may take

advantage of this independence by using multiple processors to exploit fine-grained

parallelism.

In general, the expressions generated by Gaussian elimination using nested dis-

section ordering algorithms are balanced, and hence have small depth, if there are

good separators for the graph. In the following chapters algorithms that lead to

the identification of separators for a variety of graphs will be presented. The extent

to which they separate the graph will be shown to lead to an upper bound on the

depth of expressions generated.

CHAPTER 3. GENERALIZED NESTED DISSECTION 32

T)~

b(4) AA b(5)

3) b(7)

AbA b(6

A(2 b(3) b()

b(4) a

Figure 15: The Resulting DAG With an Ordering Due to the Minimum Degree
Algorithm

I°% '%'% % % ' ' J*. ' ' , "' ,' ' ", ,', ° .=e ',.' ., L. # ='. , . ' . .d. . " €.V. 1' .. . '"-. . t e'

CHAPTER 3. GENERALIZED NESTED DISSECTION 33

x(2) x

b(4) A b(5) b(7) A A b(6)

v b I

4

A-

A b ~ b(6d v

b(4)

FFigure 16: The Resulting DAG With an Ordering Due to Nested Dissection

A.2

'I

Chapter 4

Separators for Series-Parallel

Graphs

In this chapter some properties of a class of graph called Series-Parallel (SP) are

examined.. This class of graph is often used to describe electrical networks, since

many networks are composed of only series and parallel connections of elements.

Reduction rules for SP graphs are developed first. It is then shown how these can

be used to find separators for these graphs.

4.1 Series-Parallel Reduction Rules

SP graphs may be described by the composition of their edges in terms of Series,

S, and Parallel, P, reduction rules. The two rules are shown in Figure 17. Each of

the rules results in the reduction of the number of edges in the graph by one. By

the application of a sequence of these reduction rules, it is possible to reduce a SP

graph to a single edge. For SP graphs the following applies.

Theorem 5 A multigraph is SP if and only if it can be reduced to the trivial SP

graph (two vertices joined by a single edge) by a sequence of series and parallel

reductions.

This is a trivial generalization of a corollary proposed by Duffin Ii1]. Thus, the

application of these reduction rules may be used to test if a graph is indeed SP.

34

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 35

F? 0-I
'I

Figure 17: Series and Parallel Reduction Rules

There may be many different combinations of the rules that result in a single edge,

all of which being valid reductions of the graph. This particular set of reduction

rules has been shown to possess the Church-Rosser property [30 which means that

the order in which the rules are applied will not affect the possiblity of reducing the

graph to a single edge.

The manner in which the reduction rules are applied to a graph can be described

by a binary decomposition tree [31]. Such a tree is analagous to a binary expression

tree, where the operators represent functions performed on the edges of the graph.

Figure 18 illustrates the construction of a decomposition tree for a simple SP graph

where endpoints are used to identify the edges. A decomposition tree may be built

by labeling the edges of the graph for each reduction where the labeling procedure

is described in Figure 19. The initial labels of an edge are assumed to be the set of

its endpoints.

It is interesting to note that if the P and S operators are interpreted as the

Boolean operators V and A, the decomposition tree gives all paths between the

two remaining vertices in much the same manner that the expressions generated by
Gaussian elimination describe paths for all pair of vertices. In fact, the reduction

procedure described is identical to the forward elmination step of Gaussian elimi-

nation where vertices are intially labeled with z(v) = 0 and the ordering algorithm

used is simply the selection of some vertex with d(v,) = 2.

I..

IV

*. .v ~ *I P'01

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 36

1

2: 7 1 ,> 5 6

(1.2) (2,5)3

4 4/K
(6,7) (4,7)

0.5 4

(1,6) S
12) (2,5)

() (6.7) (4,7)

(445)
(3,5) (3,4)

F.gure 18:5) Cons o o7)

(1.,2) .25) (3,S) (3,4)

Figure 18: Construction of a Decomposition Tree for a SP graph

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 37

a b ab

Figure 19: Edge Labeling for the Reduction of SP Graphs

4.2 Separators of SP Graphs

Earlier a theorem that SP graphs have 2-separators for a - was provided (Theo-
rem 3). In this section it is shown that, with a proper labeling of the decomposition

tree of a SP graph, such separators may be easily found.

Each S node in the decomposition tree represents the removal of one vertex

from the graph. Each S node, n, will be assigned an internal weight i(n) = 1 to

reflect this. Conversely, a P rule represented the removal of no vertex, but only the

removal of an edge. Each P node will be given an internal weight i(n) = 0.

Each node n in the tree, either S or P, represents a separator of the graph. Its

total weight

w(n) = Z i(p)
pEdeacna n(n)

gives the number of vertices separated from the rest of the graph by this separator.

A mapping between nodes in the tree and separators may be easily constructed by

the proper labeling of each node in the tree with an additional field. Each leaf node

represents an edge, (ts, v2i). A Series combination of two SP subgraphs defined by

their endpoints (vi, v2) and (v2 , v3), results in the separator set (VI, v3) that serves

to separate everything internal to (vI, v3) from the rest of the graph. Parallel rules

always combine two subgraphs whose endpoints are the same. By labeling each

node of the tree with the endpoints of the subgraphs they represent, each node

will be labeled with a separator pair. Figure 20 shows the labeling operations for

series and parallel rules. By applying these from the bottom up each node in a

decomposition tree may be labeled with its separator set and total weight. The tree

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 38

3-48.b)2 a S-4(& b)j .,
.abi j~s.+o, I

W.W W-w w-. b,, w2

W1,-4 . w v.: WQW
W-W

aW.
l

Figure 20: Labeling for Each Node in a Decomposition Tree

W.5

11,21~
~

125.135
1.4)'aa

1 4

Figure 21: A Decomposition Tree After Labeling

of Figure 18 is shown again in Figure 21 with each node labeled with the proper

total weight w and its separator set S.

It should be noted that the weight of the root of the decomposition tree is two

less than the total number of vertices in the graph. This is because the weight of each

node represents how many vertices would be separated from the rest of the graph,
not including the two vertices of the separator set. The algorithm of Figure 22 is

a direct implementation of the general step of the constructive proof and finds a

2-separator in a graph for which a decomposition tree has been constructed. In the

next section this function will be used as part of another algorithm for computing

a..
.1'

r; +, m ,..
ai a. a- Is a. I ,+ P a- --

a, .a.- ..% 'a-, . aI '. *+

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 39

function Find2Separator(tree T, weight W) returns tree
If w(T) < 2w then return T
else

If w(LSON(T)) <w(RSON(T)) then
Find2Separator(RSON(T), W)

ekee
Find2Separator(LSON(T))

fi
fl

end Find2Separator;

Figure 22: Recursive Algorithm for Finding 2-Separator of a SP Graph

an elimination ordering for a SP graph based on nested dissection. At this point

the theorem that SP graphs have 2-separators with a = 1 will be proved.
3

PROOF: Nodes are examined in the decomposition tree starting at the root and

descending through the tree. The general step of the proof will eventually accept

a node as a representing a valid separator of the SP graph. W represents not the

total weight of the tree, but the number of nodes in the graph. For each node in the

tree there is a separator set of size two that separates the vertices of its descendent

rules from all others in the graph. It is obvious that some node, nl, whose weight is

less than or equal to 1W may be found but it remains to be shown that the weight

of everything else in the tree, (W - tw(nl) + 2]), is also < 1W.
3S

INITIALIZATION: ni is the root of the tree.

INVARIANT: W - (w(nl) +2) 1 !W. This is initially true when n1 is the root since

W = w(nl) + 2.

GENERAL STEP: Find the child of ni with the greatest weight. Call this node

n2. If w(n2) > 1W then repeat the general step with n1 .- n2. The invariant still

holds.

V*

V.

,Y~. FY~ w 'tns Is 'ast -' P~r nfl- V- - . - - -'v- W V V rvutW trWV "u VV LMr r r r su r .. ir- - r - r~sr

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 40

Otherwise, n2 is a node that represents a separator set of size two that divides

the graph as required. The weight of n2, w(n2), is small enough; it remains to be

shown that the weight of the rest of the graph without the separator set is small

enough as well.

It is known that w(nl) > MW. Also, since each node in the tree has two children

and (at most) internal weight 1, w(n2) x 2 + 1 > w(n 1). Therefore,

w(n2) >3W -- 2'
The number of vertices in the rest of the graph is given by (W - [w (n2) + 2]). Using

the previous relation we get

(W - [w(n2) + 21) 2 -3

which indicates that both parts are small enough.

4.3 An Elimination Ordering for SP Graphs

The method of finding separators for SP graphs discussed above, can be used to

produce an elimination ordering using a procedure based on generalized nested

dissection. While SP graphs can be eliminated efficiently using the minimum de-

gree algorithm, we can expect the nested dissection elimination ordering to yield

expressions that will exhibit balance, and whose depth will be small.

An obvious implementation of a nested dissection algorithm would proceed as

follows:

" If there are only one or two vertices, number these in the range specified.

" Build a decomposition tree for the SP graph.

* Find a separator for the SP graph with decomposition tree given by the algo-

rithm of Figure 22.

" Number these two vertices the highest.

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 41

.Elimination of the separators results in two new SP graphs. Recursively num-

I ber these.

This would not be very efficient however, since it would require the building of

a decomposition tree for each subgraph. A key observation of the decomposition

tree is that the removal of a node splits the tree into two trees that describe the

subgraphs of the original graph defined by the separator. The recursive algorithm

p resented in Figure 23 produces an equivalent elimination ordering by relabeling

fields of the modified decomposition tree instead of rebuilding a tree each time.

The algorithm assumes that a decomposition tree has been produced and cor-

rectly labeled as described earlier. The variable n is assumed to contain the total

number of vertices in the graph, and global variables Eli mCnt and ElimNums

are used by the procedure AssignNumber for the numbering of vertices. Another

function called Label is responsible for recalculating the weights of the entire tree

when a subtree has been removed.

Removal of a node from the tree may be reflected by simply marking its weight

field, w, to zero. The procedure Label does not descend past nodes with zero weight.

Upon completion of the algorithm, the vertices of the graph will be numbered in an

order that represents nested dissection for a SP graph.

Applying the elimination ordering produced by the algorithm of Figure 23 to

Gaussian elimination to a system of Boolean equations represented by the graph

of Figure 24, the DAG of Figure 25 is obtained. For comparison, the results of

the minimum degree algorithm are shown as well in Figure 26. As expected, the

generalized nested dissection algorithm for SP graphs yields expressions with a small

depth (13), while the minimum degree algorithm resulted in expressions of depth

20.

The algorithm proposed for finding separators of SP graphs is interesting in that

it closely resembles the forward elimination part of Gaussian elimination. In the

next chapter, this technique will be expanded to handle graphs that are not SP.

L A !P % '

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 42

type nodetype = (Series,Parallel);

type tree = pointer to record
verts sI, s2; { The vertices of the separator aet}
int w; { The weight of the node}

tree LSON, RSON; { The two children of this node}
nodetype rule; { Whether thi node represents a Series or Parallel rule}

endrecord;

{Global variables)
int ElimCnt =n;
array of int ElimNums[1..n] = (0,0,-.. ,0);

procedure AasignNumber(vert v)
if ElimNums[v] = 0 then

ElimNums[v] *- ElimCnt;
ElimCnt +- ElimCnt - 1;

fl

end AssignNumber;

function Label (tree T) returns Int
If T.w = 0 then return 0;
else

T.w Label(T.LSON) + Label(T.RSON);
If T.rude = Series then T.wT.w + 1; fi
return T.w;

fB
end Label;

procedure ComputeOrdering(tree T)
if T.w = 0 then

AssignNumber(T.s1);
AssignNumber(T.s2);

else
t 4- Find2Separator(T);
AssignNumber(t.sl);
AssignNumber(t.s2);
t.w 4- 0;
Label(T);
ComputeOrdering(T);
ComputeOrdering(t);

fl

end ComputeOrdering;

Figure 23: Nested Dissection Elimination Ordering Algorithm for SP Graphs

- -. --- . .,' . ', ,, .-. ' ,-.. •. %

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 43

2 a f 6

b e

c d

4

Figure 24: A Sample Graph

I
N

IF -F w .W. ,Tw -- W WFX T,"ir IV v- l I.

CHAPER 4 VO? I'IIAI1,1:I, ;IA'Iw

x x (1))

Figuare 25: The1 D A(.he It(-i i'K from the (4-ntir itIizeqI N e-itedq D)imm tioit A Ipgr iin

CHAPTER 4. SEPARATORS FOR SERIES-PARALLEL GRAPHS 45

x(1)

V

x(6) A

V

x5) A

v

x(x 4l) A

d

vp

A A A A 13)

t ,'
/"V

b(3)

x(2))

bil

Fivr A6 ThvA eutn rmteMnmmDge loih

a

Chapter 5

Separators for Arbitrary Graphs q
The identification of separators in arbitrary graphs is a difficult problem. While

there are good algorithms for finding bi-connected [3] and tri-connected [18] compo-

nents in graphs that lead to the identificaton of 1- and 2-separators, and algorithms

that find separators for certain classes of graph, (e.g., planar graphs), there are no
good algorithms for finding separators in arbitrary graphs. Identification of only

the 1- and 2-separators in a graph is not sufficient, and arbitrary graphs are not

guaranteed to have them anyway. A more general method of finding separators for

use with a nested dissection ordering algorithm is desired.

This chapter will develop a method for finding separators in arbitrary graphs

based on decomposition trees. Reduction rules will be formulated based on the
elimination of vertices that occurs in Gaussian elimination. Using an elimination

ordering that gives expressions of small total complexity, it will be shown that the

elimination sequence can be reordered to obtain expressions of small depth.

5.1 Elimination Cliques

In the previous chapter, an algorithm was presented for finding 2-separators in SP
graphs. The reduction rules proposed for SP graphs repeatedly modified the graph

until a single edge remained. It was shown that the resulting decomposition tree

for SP graphs gave information about paths through the graphs, and that in this

46

Si

%' , '- .', , '.'', "\', ." .'.."...,. .',. ,r . " ", ", ", . " ".°z ," ' ,..'.'.. ,-',- ., .'.,,- .-- , ,*id': , ..'.: .' .i " , "

- .* .~. WV U V ir WVV"r VV- V~ W i- I -VV U79 y J-JJ J .PF - - . .'v7p~::F;w

CHAPTER 5. .EPARATORS FOR ARBITRARY GRAPHS 47

respect, was very similar to the result of Gaussian elimination for Boolean systems.

In fact, the Series reduction rule is exactly the process that occurs in Gaussian

elimination when a vertex of degree two is removed: one vertex is removed and a

fill-in edge is added to the graph.

An important observation of the information presented in Chapter 4 is that the

endpoints of each edge and fill-in edge represented a separator of the graph. In

the elimination of SP graphs, each edge that fills in does so to maintain paths that

existed between two vertices before the elimination of a vertex. Theorem 4 stated

that an edge (v, w) fills in only if there is a path from v to w containing only vertices

eliminated before either v or w. The endpoints of such an edge separate all vertices
comprising the path from the rest of the graph. Since an eliminated vertex in an SP

graph may only contribute to one fill-in edge, it is possible to record the vertices in

the paths defined by a fill-in edge by using an appropriately labeled decomposition

tree for each edge in the graph.

Each step in the forward elimination phase of Gaussian elimination results in

the removal of a single vertex, vi, from the graph. For SP graphs, a vertex has

exactly two neighbors at the time of its elimination. The basic operation is the

same whether there is an edge between the neighbors of vi or not. This one rule is

illustrated in Figure 27 and indicates an optional edge between two vertices. If there

is an edge, elimination of vi does not result in a fill-in edge, but merely a labeling

of the edge with a new value. If there is not an edge, elimination of vi results in a

true fill-in edge. In either situation, the set of the neighbors of vi is a 2-separator

of the graph, separating one or more vertices from all others in the graph. For

the purpose of finding separators, a single reduction rule may be defined: the SP

reduction rule. The application of this one rule involves merely finding any vertex

with two neighbors.

In an arbitrary graph, there may be more than two neighbors of vi. However,

the set adj(vi) still serves to separate vi from the graph. Because the number of

neighbors of vi may be greater than two, the result of elimination of vi is not, in

general, a single fill-in edge, but is the set of edges

C (v,) = {(u,w)u E adj(v,),w E adj(vi),u # w}.

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 48

Figure 27: A Single Reduction Rule for SP graphs

This is similar to the deficiency of a vertex, but includes edges already present in

the graph as well. The set of vertices, adj(v,), and edges, C(vi), form a clique'

in the graph, Gi, resulting after elimination of vi. The edges represent sections of

all paths of which vi was a member. In SP graphs, there was exactly one of these

edges. However, in an arbitrary graph, vi is a member of all of the paths defined

by the edges C(v,).

Elimination of another vertex, v,+l E adj(v,), results in another clique in the

graph Gj+,. The edges of this clique contain information about vj+. and vi, since

(adj(v,) - ,: adj(v+,)

and paths between members of adj(vi+,) through previously eliminated vertices

include paths through adj(vi). This can be stated as the following:

Theorem 6 In the elimination process, the vertices defined by adj(v) separate vi

from the rest of the graph. If vi E adj(v,) and j > i, then adj(vj) also separates vi

from the rest of the graph.

The structure appearing in this process is the elimination clique and its boundary
vertices. In SP graphs, this was a single edge, and a labeling scheme could simply

use edges to keep track of information concerning the constituent vertices of a path.

However, the arbitrary sized elimination clique suggests no such simple labeling

scheme.

'This clique is sometimes referred to as an elimination clique.

I:
'0

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 49

Figure 28: Reduction Rules for Arbitrary Graphs

b b

Figure 29: A Decomposition Tree Fragment

5.2 Reduction Rules for Arbitrary Graphs

A simple set of reduction rules for arbitrary graphs can be formulated in terms of
the Gaussian elimination procedure discussed. Each rule removes a single vertex

from the graph and adds fill-in edges to keep all existing paths present. The new
reduction rules have as their single criterion for application the number of neighbors

of vertex vi. Figure 28 shows a few of the reduction rules for small numbers of

neighbors.

These reduction rules may be built into decomposition trees that are similarb

to those presented for SP graphs. However, these trees are no longer binary and
will have two types of nodes: separator sets and reduction rules. A reduction rule

contains the vertex it eliminated, vi, and is also associated with a separator set node
which contains adj(v,). We can represent reduction rules graphically as shown in

Figure 29.

After application of a reduction rule, the graph has one fewer vertex, and a

decomposition tree fragment has been constructed. These fragments are joined

%U

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 50

b

Figure 30: Elimination of vi and the Resulting Decomposition Tree Fragments

.b~

V.

Figure 31: The Resulting Decomposition Tree

into a tree structure whenever possible. Consider elimination of vi as shown in

Figure 30. There are now two decomposition tree fragments. Through application

of Theorem 6,it is known that since vi E adj(v,), adj(vi) separates v, from the graph

as well. This relationship can be reflected naturally in the joining of tree fragments

as shown in Figure 31.

An algorithm for the construction of a decomposition tree is presented in Fig-

ure 32. Initially, there is a graph G and an empty set of tree fragments, F. Applica-

tion of a reduction rule to a vertex v results in a new tree fragment with a separator

Ret node 5, and reduction rule node R. Any existing fragments in F whose root

(which is a separator set node) contains v is a candidate for joining as described

above. At the termination of the algorithm, there is one tree fragment in F, which

-~V .. ~ .* . . * .,.*~

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 51

is a decomposition tree for the entire graph.

This algorithm poses an interesting problem. The order of selection of the

vertices determines the separator sets found as well as their size. Since it is desired

to find separator sets of minimum size, the problem is identical to that of minimizing

d(v) in Gaussian elimination. Once again, the minimum degree algorithm is a good

heuristic that minimizes d(v) for all v in the types of graph with which this report

is most concerned: GSP graphs and other graphs that may be reduced by rules of

small order.

5.3 A Separator Theorem for a Bipartite Tree

A theorem presented for an unusual tree will later be useful for finding separators

for arbitrary graphs. This tree has two types of nodes, red and black. A red node,

r, has internal weight, i(r) = 1, and a black node, b, has internal weight, i(b) = 0.

The total weight of a node n (of either type) is the sum of the internal weights of

all descendants of n.

w(n) =i(p)

pEdealas~(n)

Each of these nodes may have any number of children, which must be of the opposite

type; thus, it is a bipartite tree. The root of the tree is a black node and leaves of

the tree are red nodes. Figure 33 shows a sample red-black tree with appropriate

weights labeled. Red nodes are represented by circles, and black nodes by squares.

The weight of the root node w(root) = W indicates how many red nodes there

are in the tree. If the number of children of all red nodes in the tree is bounded by

some constant, k, then we can show that there is a black node whose removal from

the tree causes the tree to split into parts, none of which will have weight greater

than LW + A
Theorem 7 A Red-Black tree of total weight W in which no red node has more

than k children has a black node b that separates the tree into parts, each of which

has weight less than or equal to -W + -.

+'

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 52

(Given G = (V, E) }

type SeparatorSet = record
set, sons

endrecord;

type ReductionRule = record
vertex, order, sons

endrecord;

ReductionRule R;
SeparatorSet S;

F -0
for i = 1 to n do

V -- V - Va,;
E- E u D(v.,);
new R; S 4-- null;
R.vertex #- v.,; R.order -- d(va.); R.ons -- 0;
{See if a separator aet with these element. has already been found)
for each SeparatorSet t E F do

if adj(va.) C t.set and S : null then t.sons -- t.ons U { R }; S -- t fi
od
If S = null then

new S; S.set -- adj(v.,); S.ons -- { R }
ft

{ Try to find sets to add as descendants }
for each SeparatorSet t E F do

if va, E t.set then
R.sons -- R.eons u {t};
F 4.- F-t;

fl

od
F-- FU S;

od

Figure 32: An Algorithm to Produce a Decomposition Tree for an Arbitrary Graph

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 53

Figure 33: A Red-Black Tree

FPROOF: Black nodes are examined starting at the root of the tree and descending

through the tree. It is obvious that some black node, bl, can be found whose weight

meets the -- W + A criterion, but it must also be shown that the total weight of

all nodes not descendants of the current black node, W - w(b 1), does not exceed

the criterion.

INITIALIZATION: 61 is the root of the tree.

INVARIANT: W - w(bi) - -W + I This is true for the initial case since

W = w(b1).

GENERAL STEP: Find the child of b1 with the greatest weight. Call this node r.

If w(r) _5 h- W + 1"', then b, is the node that satisfies the required criterion.

Otherwise, find the largest child of r and call it b2 . If w(b2) > --- W + j- then

repeat the general step with b, +- b2. The invariant still holds.

Otherwise, it is claimed that b2 is the black node that separates the tree as

required. It is known that w(b2) meets the criterion. It remains to be shown that

the weight of all nodes that are not descendants of b2 , W - w(b2), does not exceed

the criterion. Since a red node may have at most k children, it is known that

w(b2)x k + 1 > w() > k W + 1

Therefore,
w__.2) 1 1w(b) >k + 1 k(k + 1) k

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 54

and,
w(b 2) > l

k +1W k + 1

Finally,

W -w(b):<W -(k 1 1

k+ 1 k + 1

An actual implementation of the algorithm as described appears in Figure 34.

This algorithm simply implements the tests described in the proof. It will be used

later in this chapter as part of another algorithm.

5.4 Using a Decomposition Tree to find Separa-

tors

In the decomposition tree proposed, each separator set node is a valid separator of

the graph for some value of ax. This section will examine how a good separator for

the graph may be selected, and what values of ax can be expected depending on the

reduction rules applied.

The decomposition tree proposed in this chapter is in fact a red-black tree.

Separator set nodes correspond to black nodes, reduction rule nodes to red nodes.

The weights proposed for red-black trees calculate the number of reduction rules

under any given node in the decomposition tree, and hence, give the number of

vertices of the graph separated by a given separator set. Removal of a black node

in the tree corresponds to the removal of the separator set from the graph. The

number of nodes in each remaining part of the graph is the total weight of the

corresponding part of the decomposition tree. Theorem 7 states that this can be

bounded for some value of k. For a decomposition tree, k is the maximum number

of children of any reduction rule in the tree. It will be shown that k is dependent

on the reduction rules applied.

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 55

function RedBlack(tree T, int k, int W) returns tree;
If red(T) then

max h- 0;
for p E children(T) do

if w(p) > w(max) then max .- p
od
RedBlack(max, k, W);

else
{Are at a black node }
If w(T) _5 k W + 1 then

return T;

else
max 4-- 0;
for p E children(T) do

If w(p) > w(max) then max 4-p

od

if u(p) -5 41 W then
return T;

else

RedBlack(max, k, W);
fi

fi
fi

end RedBlack;

Figure 34: Algorithm to Find a Black Separator Node

" ." ' ' . . . ' . ' "-e" " " . , . .

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 56

Figure 35: A Reduction Rule of Order Two

The number of children of any reduction rule is directly related to the order of the

reduction rule applied. (Ro is called order 0, R, order 1, R 2 order 2, etc.) Consider

a reduction rule of order two as shown in Figure 35. The parent node of this rule

must be a separator set containing two vertices. The only possible separator sets

that could be children of the reduction rule are those that include the vertex, v,

and some subset of the parent separator set, {u, w}. The four possible subsets are:

{v), {u,v}, {v,w}, and {U,v,w}. For any reduction rule of order k, there may be,

at most, 2 k separator sets as children.

5.4.1 Bounding the Number of Children

The previous section stated that a reduction rule of order k could have, at most,

2k children. This is true only in the worst case. Consider a graph in which all

reduction rules are of order two (an SP graph for example). While each reduction

rule has the potential for having four children, each will have at most two, since

each of its children must be sets containing two vertices. In general, if a graph can

be described entirely by reduction rules of order k, then each reduction rule will

have, at most, k children.

For decomposition trees in which there are reduction rules of varying orders,

the number of children of a reduction rule may be limited by merging some of its

child separator sets together. This may increase the size of the separator sets, but

decreases the number of children of the reduction rule.

As stated earlier, a reduction rule may have as children the separator sets whose

elements are the eliminated vertex and some subset of the parent separator set. Of

4

'.e Ae "I

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 57

the 2 k separator sets which may be children of the reduction rule of order k, k of

them are "maximal" subsets of k elements in the sense that all other separator sets

of k or fewer elements are subsets of one of these sets. If there is no reduction rule

in the tree of order k + 1, then it is known that these k separator sets will be the

only children of the reduction rule.

The algorithm of Figure 36 is similar to the algorithm of Figure 32 but ensures

the merging of separator sets by creating the k maximal subsets of a reduction rule

as its children. A procedure called MakeSubsets is used which constructs the set

of maximal separator sets. When an existing separator set is found which is a subset

of any of these maximal subsets, it is simply merged into the set, adding its children

to the list of children of the newly created maximal subset. In the event the existing

separator set is not a subset of any of the newly created maximal subsets (in which

case it must be the one possibl subset of k + 1 elements), it is simply added as a

child of the reduction rule. By applying this process, decomposition trees may be

created which obey the following theorem.

Theorem 8 In the decomposition tree for a graph described entirely by reduction

rules of order k or less, each reductio,; rule unll have, at most, k children.

This theorem and combined with Theorem 7 leads to the following:

Lemma 1 A graph described entirely by reduction rules of order k or less has a
k-separator w =ith a d+

kih+ . k+11an

5.5 A Nested Dissection Ordering Algorithm

The decomposition tree can be used to produce an elimination ordering in much the

same manner as the algorithm proposed for decomposition trees of SP graphs. The

algorithm of Figure 37 takes as arguments a decomposition tree T, and a separator

criterion k. Auxiliary procedures are defined as follows:

RedBlack: Finds the separator set node in the decomposition tree that meets the

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 58

(Given G = (V, E) }

type SeparatorSet = record
set, sons

endrecord;

type ReductionRule = record
vertex, order, sons

endrecord;

ReductionRule R; SeparatorSet S;

F.-0
fori= 1 to n do

V -- V - Va ;
E.- EU D(v.,);
new R; S +- null;
R.vertex -- vO,; R.order +- d(v.,); R.sons .- MakeSubsets(V0,,adj(vaj);
{See if a separator set urith these elements has already been found}
for each SeparatorSet t E F do

if adj(v.,) C t.set and S # null then t.sons -- t.sons U { R }; S -- t fB
od
If S = null then

new S; S.met - adj(v.,); S.sons -- { R }
fi

{ Try to find sets to add as descendants }
for each SeparatorSet t E F do

If va, E t.set then
{ See if there is a superset present }
bool found = FALSE;
for each SeparatorSet s E R.sons do

If t.set C e.set and not found then
s.sons 4- u.aons U t.sonn; found = TRUE;

fl

od
f not found then R.sons -- R.sons U {t};fi
F *-- F-t;

od
F - Fu S;

od

Figure 36: Modified Algorithm to Produce Decomposition Tree for an Arbitrary
Graph

'. "-" "e"e%% . %,%. "-, L2 "-'- . % ' ' ' -- # -". "-"-"- - . , , '-.' .. . ,..- ' . .- -, . -" ,. - -. . , --," ," .-..

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 59

procedure GeneralizedOrdering(tree T, Int k);
if T is a leaf reduction rule then

Number(T. vertex);
return;

fi
p .- RedBlack(T, k, w(T));

for each v E T.separator do
Number(v);

od
S .- p.sons;
{ Remove this 8eparator 8et node from the tree}
(p.parent).sons = (p.parent).sons p;
RelabelParents(p);
GeneralizedOrdering(T);
for each p E S do

GeneralizedOrdering (p);
od

end GeneralizedOrdering;

Figure 37: Elimination Ordering Algorithm for Generalized Decomposition Trees

given k value and returns this node.

Number: Receives a vertex as an argument and assigns it an elimination number.

This function begins numbering at n and number vertices in a descending order.

The function "remembers" those vertices that have already been numbered, and

does not re-number them.

RelabelParents: The tree is assumed to have weights initially calculated for each

node. Removal of a node requires relabeling of the weights of only the nodes above
it in the tree. This procedure follows parent links to perform this renumbering.

m i" , '"" " .'' ",'''' , -'" . -'"" ''''' "''' "-. ;'"- ' ' ." p ' " .-";" '"L ' , , -. ' . ',""

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 60

5.6 A Bound on Complexity

The total number of operations in a DAG produced by this method is a function of

the largest reduction rule applied. Consider a graph which is described by reduction

rules, all of which are of order k or less. Each separator set will have k or fewer

vertices, as will the subgraphs defined by the set of vertices not belonging to any

separator set. The elimination degree of each of the vertices belonging to these

subsets can be no more than d(v) < 3k for the following reason. Each of the

vertices can be adjacent to two separator sets which have no more than k vertices,

and may also be adjacent to vertices in its own subgraph of which there are fewer

than k vertices. Thus, each of these vertices will have d(v) < 3k.

Similarly, at the time of their elimination, each of the vertices in the separator

sets may be adjacent to two separator sets (of k vertices), and to the other ver-

tices of its own separator set. Thus, each of these vertices has d(v) : 3k. These

facts, coupled with Equation 1, gives the total complexity of performing Gaussian

elimination by this method as no more than

(9k2 + 3k)n,

which is

O(k 2n).

Thus, k may be viewed as measuring the sparsity of a graph. Small values of k

occur for graphs which are sparse, while the largest value k may take on, n, occurs

for a complete graph for which the complexity of performing Gaussian elimination

is known to be O(n 3). The expression above correctly captures this fact.

5.7 A Bound on Depth

The DAG generated by Gaussian elimination has depth dependent on the manner in

which vertices are eliminated. The generalized nested dissection algorithm presented

in this chapter can be analyzed for bounds on the depth of DAGs generated.

I

bx(1)
1)(3) V V 61

b(4)

b(,) b

Figure 38: The Depth of DAGs for a Clique

The elimination of the vertices of a clique results in a total amount of depth

added to the DAG as described by the following.

dequa(k) = diqu,(k - 1) + 3 + [Ig k]

ditque (2) = 4

The calculation for a clique of two vertices is trivial. The other part of the recurrence

will be explained with the aid of Figure 38, which illustrates a clique of four vertices.

Elimination of vertex 1 results in the DAGs under construction for vertices 2,3 and 4

growing deeper by two operators. The second half of the figure shows what happens

during backsubstitution. The edges a, b and c each contribute a depth of 1 to the

DAG of vertex 1 with an V operator, while the A operators may be balanced with

total depth [lg 4]. Thus, the amount added in the recurrence is (2 + 1 + [lg n]).

A separator divides the graph into two or more subgraphs. Prior to its elimina-

tion, all of the vertices of the two subgraphs have been eliminated except for one in

each subgraph, as depicted in Figure 39. Elimination of these two vertices external

to the separator results in a clique formed among the vertices of the separator. The

depth of DAGs for a clique has already been explored; the addition of two external

vertices must be considered next. If the separator is of size k, then the separator

with its two external vertices almost form a clique of k + 2 vertices, except that

there is no edge between the two external vertices. This recurrence makes use of

p - , . - , . m " . - %~* * . - - . -

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 62

k-separator~k-edges

Figure 39: A Separation Set and Two External Vertices

the formula for describing the depth of a clique.

d..p,(k) = dcjuq.(k) + 4 + [lg(k + 1)1

The value of d,(k) has been calculated for a few values of k as shown in the table

below. The function grows very slowly; its asymptotic growth is O(k lg k).

k d..p(k)

1 5

2 10

3 15

4 21

5 28

6 35

7 42

8 50

From the decomposition tree for a given graph, the size of the maximum reduc-

tion rule applied, k, can be found. This value also bounds the best value of a that

can be achieved using the separators shown in the decomposition tree. Each of the

subgraphs defined by the separator will be eliminated to a single vertex in a similar

manner, with a constant amount of depth added to the DAG. The size of the largest

subgraph is guaranteed to be roughly A of the total graph.

"€ , 1, ". " " =.' " ", ,. ". N ' ".p"d j ' p% -,. d. - "* "= ' " . - " - " '. "- "+ " * . ". " ", -. ",. " '

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 63

The following recurrence describes the manner in which depth grows for a given

number of vertices in a graph, n, and the maximum sized separator, k. Dk(n) is a

function that calculates the upper bound on the depth of DAG generated for a given

number of vertices with a maximum reduction rule of order k.

k
D&(n) = Dk(n) + d..p(k)

k+i

The solution to this recurrence is given by

Dk (n) = 2 d..p(k)

which is
O(jk Ig ki logyk+ n)

Thus, sublinear growth of the depth of DAG can be guaranteed with this method.

However, as k gets large, the coefficients increase and the logarithmic growth of

depth degrades.

5.8 SP and GSP Graphs Revisited

The separator theorem developed in this chapter can be seen to be a generalization

of the separator theorem for series-parallel graphs. SP graphs can be completely

described by rules of order k or less with k = 2. Therefore, for SP graphs the

generalized decomposition tree finds 2-separators with a = .

General Series-Parallel graphs were similar to SP graph except that they in-

cluded acyclic branches. This class of graph is important in that they may be used

to describe most MOS circuits that arise. GSP graphs may be described by reduc-

tion rules of order 1 and 2. Therefore, 1- and 2-separators for GSP graphs with

a = | may be found, and the DAGs representing the solution of such a network will

have depth that grows as O(lg n).

",%

~ j .5'

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 6

5.9 Experimental Results

The generalized nested dissection algorithm described in this chapter has been im-I plemented and tested for a variety of graphs that occur in MOS networks. Channel
graphs for some of the networks are shown in Appendix B. The DAGs generated
were assumed to represent binary Boolean operators and were analyzed for their

minimum depth. DAGs may be rearranged to decrease their depth through a very

simple procedure. Often, the elimination process results in a long chain of V op-

erators that may be rebalanced into a shorter tree. This was accounted for in the

program tl.at analyzed the minimum depth of a DAG.

For all coi:.- arisons, the results of a minimum degree ordering algorithm along

with the resul s of the generalized nested dissection algorithm have been shown.

The minimum degree algorithm has been observed to minimize the total number of

operations for most of the graphs presented, while the generalized nested dissection

algorithm tends to minimize depth. In most cases, there is a tradeoff between these

two: a decrease in depth results in higher total complexity.

This first group of graphs contains linear chains of the number of vertices indi-

cated in Table 2. While chains of the lengths presented do not occur often in real

networks, they dramatically illustrate the tradeoff between depth and complexity.

DAGs resulting from the minimum degree algorithm are essentially a straight line

of operators in which only one operation may be performed at a time. However, at

the increased expense of more total operations, the DAG produced by the generalized

nested dissection algorithm has significantly less depth. For the longest chain of 100

nodes, the flAGs differ in depth by almost a factor of 10, indicating that a machine

capable of parallel evaluation could evaluate the response of a network described

by this graph ten times faster than a general purpose computer.

Shift networks present a difficult problem for Gaussian elimination. No algo-

* rithms that result in a low value of total operations have been found. Table 3 shows

the results obtained for three different sixteen bit shifters that rotate data one of

three possible bit positions. Usually, the generalized nested dissection algorithm

resulted in lower depth with nearly the same total number of operations. These

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 65

Chain Minimum Degree Generalized Nested
Length Algorithm Dissection

(n) depth complexity depth complexity
10 36 36 17 60
20 76 76 25 164
30 116 116 27 284
40 156 156 33 388
50 196 196 351 308
60 236 236 35 j 628
70 276 276 41 732
80 316 316 411 852
90 356 356 41 972

100 396 396 43 10921

Table 2: Results for Linear Chains of Varying Length

Shifter Minimum Degree Generalized Nested
_______ Algorithm Dissection

_______depth complexity depth complexity
shftl6-014 112 1632 100 1632
shftl6-012 126 904 92 924
shftl6-013 130 1364 109 1364

Table 3: Results for 16-bit shifters

results are encouraging. While the savings in depth were not large, there was no

extra cost in total operations for two of the shifters and very little for the third.

Logical shifters do not exhibit the same level of complexity for solution that

rotational shifters do. The results are shown in Table 4 and are very interesting

with respect to the tradeoff between depth and complexity. Two of the networks

could be solved with a significant savings in depth with a corresponding increase in

complexity. The other two were solved with negligible savings in depth, but with

no increase in total operations.

A number of RAM cells are shown in Table 5. Each of these networks can be

described by reduction rules of order 1. Parity ladders of varying numbers of nodes

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 66

Shifter Minimum Degree Generalized Nested
Algorithm Dissection

depth complexity depth complexity
lshftl6-01 128 128 29 304

lshftl6-012 174 372 64 748
Ishft16-014 97 832 92 832
lshftl6-018 77 616 74 616

Table 4: Results for 16-bit logical shifters

RAM Minimum Degree Generalized Nested
_ _Algorithm Dissection

depth complexity depth complexity
ram4 28 32 13 40

raml6 39 100 20 132
ram32 41 164 21 196
ram64 50 340 23 436
ram256 61 1220 31 1476

Table 5: Results for RAMs of Varying Sizes

are shown in Table 6. Each of these may be described by reduction rules of order

3, and hence, have 3-separators. The results of performing Gaussian elimination

on both of these types of networks shows a logarithmic growth of depth. These

results indicate that the algorithm does, in fact, perform well for graphs that can

be described by small reduction rules.

A few miscellanous networks are shown in Table 7. Seradd.a and seradld.b repre-

sent two separate subnetworks in a serial adder circuit, and par4 is a parity genera-

tor for four bits. These results once again illustrate the tradeoff between depth and

complexity, indicating that the generalized nested dissection algorithm degrades to

a level of performance comparable to that of the minimum degree algorithm for

graphs without good separators.

N

CHAPTER 5. SEPARATORS FOR ARBITRARY GRAPHS 67

Parity Minimum Degree Generalized Nested
Ladder Algorithm Dissection

depth complexity depth complexity
10 37 62 39 76
20 92 152 85 220
30 147 242 97 376
40 202 332 113 606
50 257 422 150 940
60 312 512 155 1160

Table 6: Results for Parity Ladders of Varying Number of Vertices

Network Minimum Degree Generalized Nested
Name Algorithm Dissection

depth complexity depth complexity
seradd.a 23 64 23 64
seradd.b 17 24 10 24

pa4 25 88 24 88

Table 7: A Few Random Networks

J

Iwuwuwvwvvr~~~~~~~~~~wu'T~~.L _N W-'rA V-"'~ P ~ ~~1F'W 'p F K ~ - V, WR I; -VI -W_ . -i- ~ ~ ww r\w .xwv .'r ~v? '

Chapter 6

Discussion

This report has analyzed the expressions generated by Gaussian elimination with

a metric not widely discussed. While the depth of an expression has not been an

issue in the past, the introduction of highly parallel hardware makes it an important

consideration. It was shown that depth can be minimized by the proper selection

of an elimination ordering through nested dissection and that the growth of depth

can be bounded as a function of characteristics of the graph.

Two separate topics have been examined in this report. One is a method for

solving systems of Boolean equations, and the other is a method of finding separators

in arbitrary graphs. It is curious that the general framework of Gaussian elimination

is common to the solution of both problems. The use of separators to produce an

elimination ordering for Gaussian elimination results in a strange double use of the

general Gaussian elimination algorithm: once to find separators and then again to

actually solve the system. In fact, the actual code was written as two identical

Gaussian elimination shells, with operators replaced as necessary.

The method presented for computing an elimination ordering is especially suited

to those graphs that can be completely decomposed using reduction rules Gf small

order. GSP graphs were shown to be able to be eliminated with all vertices having

elimination degree of two or less, resulting in efficient solution of systems described

by GSP graphs with small total depth. This is fortunate, since the original applica-

tion was the simulation of MOS networks, most of which can be described by GSP

68

- s 4eN N ~ ~ (V % ~ N*%* ~ ~ : -~-~ . * * . N.. *

2L .~ .AA

~:v ~ ' ~ .*** WIWI I WI ~ I) '~ ~ .N ~J ~P P .. ' ~ ~ P ~.- ~ *. ~ ~ - -.. , ' V

CHAPTER 6. DISCUSSION 69

graphs.

While the main intent of this work was to find a way of optimizing the DAGs

describing MOS networks for depth, the method is applicable to any graph. The

order of reduction rules applied, k, was shown to determine the depth of the resulting

DAG. Experimental evidence also showed that there seemed to be a tradeoff between

depth and total complexity. For graphs that did not have good separators by the

method, the resulting DAG was similar in depth and complexity to that produced by

the minimum degree elimination algorithm, which is considered to be good for many

classes of graphs. This is a desirable characteristic, indicating that the algorithm

proposed degrades graccfully, rather than simply not working at all.

6.1 Future Considerations

This work has raised a number of interesting questions. The basic algorithm used

in the production of a decomposition tree is the minimum degree algorithm; other

methods should be examined. In particular, a nested dissection algorithm should

be applied at this stage to produce an elimination ordering for finding the decom-

position tree. This tree would then be used to produce an elimination ordering to

solve the system.

Finally, there may be other methods of explicitly minimizing the depth of ex-

pressions. A method based on a greedy depth algorithm was explored and looked

promising, but the results were inconclusive. While separators divide the graph,

they do not guarantee that the subgraphs induced have nearly the same "span", or

length of longest path in the graph. Depth is clearly related to how far (in edges)

information travels in a graph. Explicit minimization of this factor could lead to

DAGs of even smaller depth.

$WIWI lir W W7 ~rW1UJ 1%, .rr .. r PO L r. V' K.- .1 -- r %n 'U -"L WI lu W vq W

Appendix A

Graph Theoretical Definitions

A short introduction to some basic terms from graph theory will be given here.

Most are standard (see [17]).

A graph G = (V,E) consists of a finite set of n = IVI vertices and a finite set

of rn = IEI edges. Edges are pairs of vertices with E C {(v,w)lv, w E V,v # w}. If

(v, w) is an edge, vertices v and w are adjacent and edge (v, w) is incident to v and

w, which axe it- endpoints. The number of edges incident on a vertex is its degree.

The set of vertices adjacent to v are denoted adj(v) and are sometimes also called

the neighbors of v.

If the edges are unordered pairs then the graph is undirected, otherwise it is a

directed graph. An edge (v, w) in a directed graph has a tail v and a head w. A

directed graph is called a digraph. A vertex v of a digraph has an associated indegree

and outdegree. The number of edges whose head is v is the vertex's indegree and

the number of edges whose tail is v is its outdegree. A vertex whose indegree is 0

is called a source and a vertex whose outdegree is 0 is called a sink.

If the set of edges is a multiset, that is, if multiple edges between the same two

vertices are allowed, then the graph is called a multigraph. A directed multigraph

is called a multidigraph.

Graph G' = (V',EV) is a subgraphofG if V' C V and E' C E. IfW C V, the

induced subgraph G(W) = (W,E(W)) where

E(W) = {(v,w) E EIv,w E W}.

70

• V ,,. o o e . , , . . ." . .% " * % % ' , .= . - • % ' , ' '

APPENDIX A. GRAPH THEORETICAL DEFINITIONS 71

A complete graph is a graph in which each pair of distinct vertices is joined by an

edge. A clique of a graph G is a subset S of V such that G(S) is complete.

A path of length k between vertices v and u; is a sequence of vertices v

SvO, , s . = w such that {v,_1 , vi} is an edge for 1 < i < k and all the ver-

tices v1, -- , vk are distinct. If v = w the path is a cycle. If every pair of vertices

in G is joined by a path, then G is connected. A chord is an edge that joins two

vertices in a cycle that are not adjacent. A chordal graph is one in which every

cycle of at least four vertices has a chord

If vertices of a graph can be partitioned into two sets V, and V2 such that every

edge has one endpoint in V, and the other in V'2, the the graph is a bipartite graph.

Similarly, if the nodes of a tree can be partitioned into two sets such that every

edge has one endpoint in each of the sets, then the tree is a bipartite tree.

'.4%

Appendix B

Various Channel Graphs

I

72

APPENDLX B. VARIOUS CHANNEL GRAPHS 73

Figure 40: A Linear Chain Graph of Ten Vertices

Figure 41: A Sixteen-Bit Shifter

Figure 42: A Sixteen-Bit Logical Shifter

16'

.%

APPENDIX B. VARIOUS CHANNEL GRAPHS 74

Figure 43: Seradd.a

Figure 44: Seradd.b

Figure 45: Channel Graph for a Sixtecn-Bit RAM Cell

Bibliography

[1] ZyCad LE-O01 and LE-002 Product Description. ZyCad Corp., 1982.

[21 S. K. Abdali and B. D. Saunders. Transitive Closure and Related Semiring

Properties via Eliminants. Theoretical Computer Science, 40:257-274, 1985.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.

[51 J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. The Macmil-

lan Press Ltd., 1982.

[6] R. E. Bryant. Conversation, 1986.

[7] R. E. Bryant. Papers about a Symbolic Analyser for MOS Circuits. Com-

puter Science CMU-CS-86-114, Dept. of Computer Science, Carnegie-Mellon

University, Pittsburgh, March 1986.

[8] W. J. Dally and R. E. Bryant. A Hardware Architecture for Switch-Level

Simulation. IEEE Trans. on Computer-Aided Design of Integrated Circuits,

CAD-4(3):239--249, July 1985.

[91 M. M. Denneau. The Yorktown Simulation Engine. In 19th Design Automation

Conference, pages 55-59, ACM, 1982.

75

-

BIBLIOGRAPHY 76

[10] H. N. Djidjev. Separator Theorems for Planar Graphs. Doklady Bolgarskoi

Akademii Nauk, 34(2):163-164, 1981.

[il] R. J. Duffin. Topology of Series-Parallel Networks. Journal of Math. Anal.

and Appl., 10:303-318, 1965.

[12] E. H. Frank. Switch-Level Simulation of VLSI Using a Special-Purpose, Data-

Driven Computer. In 22nd Design Automation Conference, pages 735-738,

ACM, 1985.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[14] A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal

on Numerical Analysis, 10:345-363, 1973.

[151 A. George and J. W. H. Liu. An Automatic Nested Dissection Algorithm

for Irregular Finite Element Problems. SIAM Journal on Numerical Analysis,

15:1053-1069, 1978.

[16] J. R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination.

PhD thesis, Stanford University, December 1980.

[17] F. Harary. Graph Theory. Addison-Wesley, 1969.

[18] J. Hopcroft and R. E. Tarjan. Dividing a Graph into Tri-connected Compo-

nents. SIAM J. Computing, 2(3):135-158, Sept 1973.

[19] J. A. G. Jess. Some New Results on Decomposition and Pivoting of Large

Sparse Systems of Linear Equations. IEEE Trans. on Circuits and Systems,

23(12):729-738, December 1976.

[20] R. 3. Lipton, D. 3. Rose, and R. E. Tarjan. Generalized Nested Dissection.

SIAM Journal on Numerical Analysis, 16(2):346-358, April 1979.

[21] R. J. Lipton and R. E. Tarjan. Applications of a Planar Separator Theorem.

SIAM Journal on Computing, 9(3):615-627, August 1980.

%I

BIBLIOGRAPHY 77

[22] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Cir-

cuits. PhD thesis, Univ. of California, Berkeley, May 1975.

[231 V. Pan and J. Reif. Efficient Parallel Solution of Linear Systems. Technical

Report TR-02-85, MIT, 1985.

[24] V. Pan and J. Reif. Extension of the Parallel Nested Dissection Algorithm to

the Path Algebra Problems. Technical Report TR-15-85, MIT, 1985.

[25] S. Parter. The Use of Linear Graphs in Gaussian Elimination. SIAM Review,
3(2):119--130, 1961.

[26] D. J. Rose. A Graph-Theoretic Study of the Numerical Solution of Sparse

Positive Definite Systems of Linear Equations. In R. C. Read, editor, Graph

Theory and Computing, pages 184-218, Academic Press, 11 Fifth Ave, New

York, NY 10003, 1972.

[27] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimination on

Directed Graphs. sicomp, 34(l):176-197, January 1978.

[28] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.

of the AIEE, 57:713-723, 1938.

[29] R. E. Tarjan. Fast Algorithms for Solving Path Problems. J. ACM, 28(3):595-

614, July 1981.

[30] J. Valdes, R. E. Tarjan, and E. L. Lawler. The Recognition of Series Parallel

Digraphs. 11th Annual ACM Symposium on Theory of Computing, 6:1-12,

May 1979.

[31] J. A. Valdes. Parsing Flowcharts and Series-Parallel Graphs. PhD thesis,

Stanford University, 1978.

[32] M. Yannakakis. Computing the Minimum Fill-in is NP-Complete. SIAM J.

Alg. Disc. Meth., 2:77-79, 1981.

4

-1

